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6 Relations between measures

Proposition 6.1. Let X be a measured space with σ-algebra M. Let µ1, µ2

be positive measures on M. Then, µ := µ1 + µ2 is a positive measure on

(X,M). Moreover, L1(µ) = L1(µ1) ∩ L1(µ2) and∫
A
f dµ =

∫
A
f dµ1 +

∫
A
f dµ2 ∀f ∈ L1(µ), A ∈ M.

Proof. Exercise.

De�nition 6.2 (Complex Measure). Let X be a measured space with σ-
algebra M. Then, a map µ : M → C is called a complex measure i� it

is countably additive, i.e., satis�es the following property: If {An}n∈N is a

sequence of elements of M such that An ∩Am = ∅ if n 6= m, then

µ

(⋃
n∈N

An

)
=

∞∑
n=1

µ(An).

Remark 6.3. 1. The above de�nition implies µ(∅) = 0. 2. The convergence
of the series in the de�nition is absolute since its limit must be invariant

under reorderings. 3. In contrast to positive measures, a complex measure is

always �nite.

Exercise 33. Show that the complex measures on a given σ-algebra form a

complex vector space.

De�nition 6.4. Let X be a measured space with σ-algebra M. Let µ be a

positive measure on (X,M) and ν a positive or complex measure on (X,M).
We say that ν is absolutely continuous with respect to µ, denoted ν � µ i�

µ(A) = 0 implies ν(A) = 0 for all A ∈ M.

De�nition 6.5. Let X be a measured space with σ-algebra M. Let µ be a

positive or complex measure on (X,M). We say that µ is concentrated on

A ∈ M i� µ(B) = µ(B ∩A) for all B ∈ M.

De�nition 6.6. Let X be a measured space with σ-algebra M. Let µ, ν be

positive or complex measures on (X,M). We say that µ and ν are mutually

singular, denoted µ ⊥ ν, i� there exist disjoint sets A,B ∈ M such that µ
is concentrated on A and ν is concentrated on B.

Proposition 6.7. Let µ be a positive measure and ν, ν1, ν2 be positive or

complex measures.

1. If µ is concentrated on A and ν � µ, then ν is concentrated on A.

2. If ν1 � µ and ν2 ⊥ µ, then ν1 ⊥ ν2.
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3. If ν � µ and ν ⊥ µ, then ν = 0.

4. If ν1 � µ and ν2 � µ, then ν1 + ν2 � µ.

5. If ν1 ⊥ ν and ν2 ⊥ ν, then ν1 + ν2 ⊥ ν.

Proof. Exercise.

Theorem 6.8. Let X be a measure space with σ-algebra M and σ-�nite
measure µ. Let ν be a �nite measure on (X,M).

1. (Lebesgue) Then, there exists a unique decomposition

ν = νa + νs,

into �nite measures such that νa � µ and νs ⊥ µ.

2. (Radon-Nikodym) There exists a unique [h] ∈ L1(µ) such that for all

A ∈ M,

νa(A) =

∫
A
hdµ.

Proof. We �rst show the uniqueness of the decomposition ν = νa + νs in

(1.). Suppose there is another decomposition ν = ν ′a + ν ′s. Note that all

the measures involved here are �nite and thus are also complex measures.

In particular, we obtain the following equality of complex measures, νa −
ν ′a = ν ′s − νs. However, by Proposition 6.7 the left hand side is absolutely

continuous with respect to µ while the right hand side is singular with respect

to µ. Again by Proposition 6.7, the equality of both sides implies that they

must be zero, i.e., ν ′a = νa and ν ′s = νs.

To show the uniqueness of [h] ∈ L1(µ) in (2.) we note that given another

element [h′] ∈ L1(µ) with the same property, we would get
∫
A(h−h′) dµ = 0

for all measurable sets A. By Proposition 3.21 then 0 = [h−h′] = [h]− [h′] ∈
L1(µ).

We proceed to construct the decomposition ν = νa + νs and the element

[h] ∈ L1(µ). By Lemma 4.21, there is a function w ∈ L1(µ) with 0 < w < 1.
This yields the �nite measure µw, given by

µw(A) :=

∫
A
w dµ ∀A ∈ M.

(Recall the last part of Exercise 28.) De�ne the �nite measure ϕ := ν +
µw. Note that L1(ϕ) ⊆ L1(ν) and L1(ϕ) ⊆ L1(µw) and we have (using

Proposition 6.1),∫
X
f dϕ =

∫
X
f dν +

∫
X
fw dµ ∀f ∈ L1(ϕ). (1)
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In particular, we may deduce∣∣∣∣∫
X
fdν

∣∣∣∣ ≤ ‖f‖ν,1 ≤ ‖f‖ϕ,1 ∀f ∈ L1(ϕ).

By Proposition 4.20 we have L2(ϕ) ⊆ L1(ϕ) and even

‖f‖ϕ,1 ≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).

Combining the inequalities we �nd∣∣∣∣∫
X
fdν

∣∣∣∣ ≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).

This means that the linear map α : L2(ϕ) → K ⊆ C given by [f ] 7→
∫
X [f ]dν

is bounded. Since L2(ϕ) is a Hilbert space, Theorem 4.28 implies that there

is an element g ∈ L2(ϕ) such that α([f ]) = 〈[f ], [g]〉 for all f ∈ L2(ϕ). This
implies, ∫

X
fdν =

∫
X
fg dϕ ∀f ∈ L2(ϕ) (2)

By inserting characteristic functions for f we obtain

ν(A) =

∫
A
g dϕ ∀A ∈ M.

On the other hand we have ν(A) ≤ ϕ(A) for all measurable sets A and hence,

0 ≤ 1

ϕ(A)

∫
A
g dϕ =

ν(A)

ϕ(A)
≤ 1 ∀A ∈ M : ϕ(A) > 0.

We can now apply the Averaging Theorem (Theorem 3.20) to conclude that

0 ≤ g ≤ 1 almost everywhere. We modify g on a set of measure zero if

necessary so that 0 ≤ g ≤ 1 everywhere. In particular, if f ∈ L2(ϕ) then
(1− g)f ∈ L2(ϕ) and gf ∈ L2(ϕ). Combining (1) and (2) we �nd∫

X
(1− g)f dν =

∫
X
fgw dµ ∀f ∈ L2(ϕ).

Set Za := {x ∈ X : g(x) < 1} and Zs := {x ∈ X : g(x) = 1} and de�ne the

measures νa(A) := ν(A∩Za) and νs := ν(A∩Zs) for all A ∈ M. Since X is

the disjoint union of Za and Zs we obviously have ν = νa + νs. Taking f to

be the characteristic function of Zs we �nd that
∫
Zs

w dµ = 0. Since 0 < w,
we conclude that µ(Zs) = 0. In particular, this implies that µ is supported

on Za, while νs is supported on Zs, so νs ⊥ µ.
De�ne now the sequence {fn}n∈N of functions fn :=

∑n
k=1 g

k−1. Since

g is bounded, fn is bounded. Multiplying with characteristic functions we

�nd for measurable sets A,∫
A
(1− gn) dν =

∫
A
(1− g)fn dν =

∫
A
fngw dµ.
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Note that {1−gn}n∈N increases monotonically and converges pointwise to the

characteristic function of Za. Thus, by the Monotone Convergence Theorem

(Theorem 3.26) or by the Dominated Convergence Theorem (Theorem 3.29)

the left hand side converges to ν(A ∩ Za) = νa(A).
The sequence {fngw}n∈N is also increasing monotonically with its µ-

integrals over A bounded by νa(A). So the Monotone Convergence Theorem

(Theorem 3.26) applies and the pointwise limit is a µ-integrable function h.
We get

νa(A) =

∫
A
hdµ,

showing existence in (2.) and also νa � µ, thus completing the existence

proof for (1.).

Remark 6.9. The function h appearing in the above Theorem is also called

the Radon-Nikodym derivative, denoted as h = dνa/dµ.


